Package: superpc 1.12
Jean-Eudes Dazard
superpc: Supervised Principal Components
Does prediction in the case of a censored survival outcome, or a regression outcome, using the "supervised principal component" approach. 'Superpc' is especially useful for high-dimensional data when the number of features p dominates the number of samples n (p >> n paradigm), as generated, for instance, by high-throughput technologies.
Authors:
superpc_1.12.tar.gz
superpc_1.12.zip(r-4.5)superpc_1.12.zip(r-4.4)superpc_1.12.zip(r-4.3)
superpc_1.12.tgz(r-4.4-any)superpc_1.12.tgz(r-4.3-any)
superpc_1.12.tar.gz(r-4.5-noble)superpc_1.12.tar.gz(r-4.4-noble)
superpc_1.12.tgz(r-4.4-emscripten)superpc_1.12.tgz(r-4.3-emscripten)
superpc.pdf |superpc.html✨
superpc/json (API)
NEWS
# Install 'superpc' in R: |
install.packages('superpc', repos = c('https://jedazard.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jedazard/superpc/issues
Last updated 2 years agofrom:b97ad59c5d. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | NOTE | Nov 01 2024 |
R-4.5-linux | NOTE | Nov 01 2024 |
R-4.4-win | NOTE | Nov 01 2024 |
R-4.4-mac | NOTE | Nov 01 2024 |
R-4.3-win | NOTE | Nov 01 2024 |
R-4.3-mac | NOTE | Nov 01 2024 |
Exports:superpc.cvsuperpc.decorrelatesuperpc.fit.to.outcomesuperpc.listfeaturessuperpc.lrtest.curvsuperpc.newssuperpc.plot.lrtestsuperpc.plotcvsuperpc.plotred.lrtestsuperpc.predictsuperpc.predict.redsuperpc.predict.red.cvsuperpc.predictionplotsuperpc.rainbowplotsuperpc.train